
Journal of Computational Physics 226 (2007) 1332–1347

www.elsevier.com/locate/jcp
Numerical analysis of time integration errors
for nonequilibrium radiation diffusion

D.A. Knoll a,*, R.B. Lowrie, a, J.E. Morel a,b

a Los Alamos National Laboratory, United States
b Texas A & M University, United States

Received 31 May 2006; received in revised form 2 February 2007; accepted 16 May 2007
Available online 16 June 2007
Abstract

Numerical analysis of time integration errors for nonequilibrium radiation diffusion is considered. Two first-order
implicit time integration methods are studied. Asymptotic analysis and modified equation analysis are applied to both time
integration methods. Numerical experiments are used to highlight the results of the analysis. Asymptotic analysis is used to
highlight the source of temperature spiking when a hot radiation wave propagates into a cold material. Modified equation
analysis is used to provide insight into the thermal wave speed coming from the two different first-order methods.
� 2007 Elsevier Inc. All rights reserved.
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1. Background

Nonequilibrium radiation diffusion systems are used to simulate problems in inertial confinement fusion [1],
Z-pinch experiments [19], and astrophysical problems [20]. There has been a recent interest in putting forth
new time integration methods for nonequilibrium radiation diffusion [8,17,2,14,16,18]. This activity has been
motivated by the desire to potentially increase the accuracy of time integration of these systems by removing
first-order linearization and operator splitting. There has also been some effort on applying numerical analysis
to such problems [6,14]. Here we advance the effort of applying numerical analysis to time integration of
nonequilibrium radiation diffusion with the goal of gaining insight. We will apply both modified equation
analysis [5] and asymptotic analysis [12] to a pair of first-order time integration methods.

We study the following one-dimensional coupled system for the grey radiation energy density, E, and the
material temperature, T, ignoring material conduction and material motion:
0021-9

doi:10

* Co
E-m
oE
ot
� o

ox
Dr

oE
ox

� �
¼ craðB� EÞ; ð1aÞ
991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

.1016/j.jcp.2007.05.034

rresponding author. Current address: Idaho National Laboratory, United States. Tel.: +1 208 526 9104; fax: +1 208 526 2930.
ail address: Dana.Knoll@inl.gov (D.A. Knoll).

mailto:Dana.Knoll@inl.gov


D.A. Knoll et al. / Journal of Computational Physics 226 (2007) 1332–1347 1333
Cv
oT
ot
¼ �craðB� EÞ; ð1bÞ

ra ¼ �raT�3; ð2Þ
B ¼ aRT 4; ð3Þ
where Dr is the diffusion coefficient, c is the speed of light, ra is the macroscopic absorption cross section, Cv is
the material heat capacity, �r is a parametric constant, and aR is the radiation constant. We comment that all
results in this study are directly applicable in more than one dimension. Eqs. (1a) and (1b) are a coupled par-
tial differential equation (PDE) and ordinary differential equation (ODE) system. These equations (in some
cases with certain material properties explicitly set to 1) were considered previously in [7,8,17,14]. Here we
use Larsen’s form for a flux-limited diffusion coefficient,
DrðT ;EÞ ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3raÞ2 þ 1
E

oE
ox

� �2
q ; ð4Þ
which has certain desirable asymptotic properties that are later discussed [15]. Since the heat capacity is often a
weak function of temperature, we henceforth assume for simplicity that it is equal to 1.

The coupled system (1) contains a dynamical time scale, in which the system evolves, and two normal mode
time scales which combine to define the dynamical time scale. For the thermal wave problems we will consider
the dynamical time scale as simply the time scale for the thermal wave propagation. The two normal mode
time scales come from thermal equilibration (the reaction term) and radiation diffusion.

In the limit where thermal equilibration is much faster than radiation diffusion (cra � Dr

‘2 , with ‘ the gradi-
ent scale length of the solution) this system is said to be in its equilibrium limit. In that case E = aRT4 and the
following equation provides a solution to the problem,
oðT þ aRT 4Þ
ot

� o

ox
dr

oaRT 4

ox

� �
¼ 0; ð5aÞ

E ¼ aRT 4; ð5bÞ

drðT Þ ¼
c

3ra

: ð5cÞ
We will derive this analytic result shortly through the use of asymptotic analysis [12].
We will consider two methods of advancing the solution in time from time level n to time level n + 1 over a

time step Dt. Spatial discretization will be ignored for this discussion, and we focus on two methods which are
first-order accurate in time.

A commonly used approach for time integration of this system is referred to as the linearly implicit (LI)
method [7,8]. In the linearly implicit method (also called the semi-implicit (SI) method) we solve the two com-
ponent system coupled but the nonlinearities are not converged within a time step. The transport coefficients,
ra and Dr are evaluated at time level n, and Bn+1 is approximated from a first-order Taylor series expansion at
time level n Bnþ1 � Bn þ Dt oB

ot ¼ Bn þ Dt oB
oT

oT
ot

� �
. These approximations yield the following difference equations
Enþ1 � En

Dt
� o

ox
Dn

r

oEnþ1

ox

� �
¼ crn

aðaRðT nÞ4 þ 4aRðT nÞ3ðT nþ1 � T nÞ � Enþ1Þ; ð6aÞ

T nþ1 � T n

Dt
¼ �crn

aðaRðT nÞ4 þ 4aRðT nÞ3ðT nþ1 � T nÞ � Enþ1Þ: ð6bÞ
This is a linear problem and requires no nonlinear iteration.
We will also consider an implicitly balanced (IB) method [6]. By implicitly balanced methods we mean that

all nonlinearities are converged, and all fluxes and sources are evaluated at the same point in discrete time. The
first-order accurate implicitly balanced time integration method is based on backward Euler time discretiza-
tion and is
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Enþ1 � En

Dt
� o

ox
Dnþ1

r

oEnþ1

ox

� �
¼ crnþ1

a ðaRðT nþ1Þ4 � Enþ1Þ; ð7aÞ

T nþ1 � T n

Dt
¼ �crnþ1

a ðaRðT nþ1Þ4 � Enþ1Þ: ð7bÞ
This method is nonlinear and thus requires some form of nonlinear iteration. As in [7,8] we use the Jacobian-
free Newton–Krylov method to solve this system.

Both the LI and IB methods are consistent. They will both produce first-order time step convergence in the
limit of small Dt. However, their performance can be different at larger Dt, and these methods are often used
with larger Dt.

2. Asymptotic analysis

Many multiphysics problems have expected behavior in certain, asymptotic limits. A classic example of this
is the diffusion limit of the transport equation [11,10,15]. Here, if the collisional mean free path is small com-
pared the gradient scale length of the problem, then the transport equation will be equivalent to the diffusion
equation to lowest order. This can be shown on the analytic problem using asymptotic analysis [11,10,15]. This
same analysis can be usefully applied to the discretized transport equation. Certain discretizations of the trans-
port equation have been shown to preserve the discrete diffusion limit, while others do not. Discretizations of
the transport equation which preserve the diffusion limit are generally essential for highly diffusive problems
because accurate solutions with non-asymptotic preserving discretizations can only be assured with grids that
resolve the collisional mean free path. This results in arbitrarily over-resolved grids because the diffusion
length, which is the spatial scale length of diffusive solutions, becomes infinite relative to the collisional mean
free path in the asymptotic diffusion limit. In contrast, asymptotic preserving discretizations of the transport
equation yield accurate solutions in highly diffusive problems whenever the spatial variation of such solutions
is well resolved by the grid.

The above discussion focuses on the spatial discretization of the transport equation. In the present work we
‘‘accept’’ the spatial discretization and perform asymptotic analysis of the thermal nonequilibrium diffusion
model in time. This is similar to the recent work of Densmore and Larsen [3]. In this paper, we are not study-
ing the issue related to resolving an initial transport layer within a diffusion model.

We will first perform the asymptotic analysis on our PDE/ODE nonequilibrium system, Eq. (1), to
establish the asymptotic model in the continuum. Next we will apply the asymptotic analysis to the differ-
ent time integration methods and establish if they satisfy the equilibrium solution. We desire methods
which can obtain the proper equilibrium solution when it is appropriate, without needing to resolve the
fast equilibration time scale.

2.1. Continuum analysis

To perform the asymptotic analysis, we must nondimensionalize the equations and identify which nondi-
mensional parameters are small. Each quantity is nondimensionalized via the following substitutions:
x! xrefx; t! tref t; T ! T refT ;

E! aRT 4
ref E; ra ! raref

ra; Dr !
c

raref

Dr;
where raref
¼ �raT�3

ref . The subscript ‘‘ref’’ represents a dimensional reference value for each quantity. Under this
transformation, the system (1) can be rearranged to read
xref

ctref

oE
ot
� 1

xrefraref

o

ox
Dr

oE
ox

� �
¼ xrefraref

raðT 4 � EÞ; ð8aÞ

xref

ctref

oT
ot
¼ �xrefraref

raðT 4 � EÞ; ð8bÞ
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where
DrðT ;EÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3raÞ2 þ 1
xref raref

1
E

oE
ox

� �2
r : ð8cÞ
We now can identify the following two nondimensional parameters:
xref

ctref

;
1

xrefraref

:

The first parameter represents the ratio of the gradient length scale (xref) to the distance streaming photons
travel within the dynamical time scale of interest (ctref). The second parameter is the ratio of the absorption
mean free path (r�1

aref
) to the gradient length scale. In the collision-dominated regime of interest here, we expect

both of these parameters to be small, and therefore set
xref

ctref

� 1

xrefraref

� e� 1;
where e is our asymptotic ‘‘smallness’’ parameter. See Refs. [3,12,15] for similar analysis of more complicated
transport models. With B = T4 our scaled nonequilibrium equations are,
e2 oE
ot
� e2 o

ox
Dr

oE
ox

� �
¼ raðB� EÞ; ð9aÞ

e2 oT
ot
¼ �raðB� EÞ; ð9bÞ
where
DrðT ;EÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3raÞ2 þ e2 1
E

oE
ox

� �2
q ð9cÞ
and ra = 1/T3. Note that the sum of these equations gives the conservation statement
oðT þ EÞ
ot

� o

ox
Dr

oE
ox

� �
¼ 0; ð10Þ
which we will use frequently in our analysis.
Next, the variables are expanded in powers of e as, for example,
E ¼ E0 þ eE1 þ e2E2 þ � � �

and similar expansions for T, B, Dr, dr, and ra. We then substitute the expansions into the scaled equations
and equate like powers of e to complete the analysis. The O(e0)-equations for both Eqs. (9a) and (9b) give
E0 ¼ B0 ¼ T 4
0; ð11aÞ
while Eq. (10) becomes simply
oðT 0 þ B0Þ
ot

� o

ox
dr0

oB0

ox

� �
¼ 0; ð11bÞ
where
dr0
¼ 1

3ra0

; ra0
¼ T�3

0 : ð11cÞ
This system is simply a nondimensional version of the system (5).
Matching solely the O(e0) asymptotic behavior is insufficient. Larsen et al. [12] showed that the equilibrium

diffusion model matches the asymptotics of the full transport equation through O(�1), and Morel [15] showed
that the nonequilibrium diffusion model, with the flux-limited diffusion coefficient (9c), similarly matches the
asymptotics of the full transport equation through O(�1). Consequently, we must ensure our time discretiza-
tions maintain this asymptotic behavior. The O(e1)-terms for of Eqs. (9a) and (9b) give
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E1 ¼ B1 ¼ 4T 3
0T 1: ð12aÞ
Eq. (10) yields
oðT 1 þ B1Þ
ot

� o

ox
dr1

oB0

ox

� �
� o

ox
ðdr0

oB1

ox
Þ ¼ 0 ð12bÞ
where
dr1
¼ �dr0

ra1

ra0

; ra1
¼ �3ra0

T 1

T 0

: ð12cÞ
This completes the analysis of the continuum model.

2.2. Discrete analysis

Next we wish to apply the analysis above to our time discretizations. This will tell us if the asymptotic solu-
tion resulting from the time discretization of the nonequilibrium system will produce a numerical answer
which is equivalent to the time discretization of the equilibrium equation. If this is the case, then when the
equilibrium equation applies, we should be able to use time steps which are large relative to (cra)�1. Following
similar arguments as in Ref. [13], we refer to such methods as asymptotic preserving. Non-asymptotic preserv-
ing methods must always use a time step which resolves the equilibration process. In other words, since the
equilibration time goes to zero as � goes to zero, non-asymptotic preserving methods require a time step that
goes to zero as epsilon goes to zero. This can clearly lead to arbitrarily small time steps in highly asymptotic
problems. In contrast, asymptotic preserving methods require a time step that depends only upon the temporal
variation of the asymptotic solution, and is therefore independent of � to leading order.

2.2.1. Implicitly balanced method

It is straightforward to show that the leading order asymptotic terms of the implicitly balanced (IB) time
integration method, Eq. (7), satisfy
ðT 0 þ B0Þnþ1 � ðT 0 þ B0Þn

Dt
� o

ox
dnþ1

r0

oBnþ1
0

ox

� �
¼ 0; ð13aÞ

Enþ1
0 ¼ Bnþ1

0 ¼ ðT nþ1
0 Þ

4
: ð13bÞ
This system is a first-order accurate time discretization of the system, Eq. (11). Next, we check the O(e1) terms,
which yield
ðT 1 þ B1Þnþ1 � ðT 1 þ B1Þn

Dt
� o

ox
dnþ1

r1

oBnþ1
0

ox

� �
� o

ox
dnþ1

r0

oBnþ1
1

ox

� �
¼ 0; ð14aÞ
where
Enþ1
1 ¼ Bnþ1

1 ¼ 4ðT nþ1
0 Þ

3T nþ1
1 : ð14bÞ
This is a first-order accurate time discretization of the system in Eq. (12). Therefore, the IB method matches
the asymptotic behavior of the analytic equation through O(e1) terms, and thus is asymptotic preserving.

2.2.2. Linearly implicit method

The result for the linearly implicit (LI) method, Eq. (6), is more interesting. The scaled discrete problem is
e2 Enþ1 � En

Dt
� e2 o

ox
Dn

r

oEnþ1

ox

� �
¼ rn

a Bn þ oB
oT
ðT nþ1 � T nÞ � Enþ1

� �
; ð15aÞ
and
e2 T nþ1 � T n

Dt
¼ �rn

a Bn þ oB
oT
ðT nþ1 � T nÞ � Enþ1

� �
; ð15bÞ
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while the discrete conservation statement is
ðT þ EÞnþ1 � ðT þ EÞn

Dt
� o

ox
ðDn

r

oEnþ1

ox
Þ ¼ 0: ð16Þ
The O(e0)-equations of Eq. (15) produce
Enþ1
0 ¼ Bn

0 þ
oB0

oT 0

� �n

ðT nþ1
0 � T n

0Þ; ð17Þ
while Eq. (16) becomes
ðT 0 þ E0Þnþ1 � ðT 0 þ E0Þn

Dt
� o

ox
dn

r0

oEnþ1
0

ox

� �
¼ 0; ð18Þ
Not surprisingly, Eq. (17) differs from Eq. (13b). If the LI method is asymptotic preserving, then this difference
must be within the order-of-accuracy of the methods (both are O(Dt)-methods). To show this, we begin with
the following expansion:
Bnþ1
0 ¼ Bn

0 þ
oB0

oT 0

� �n

dT n
0 þ

o
2B0

oT 2
0

� �n

ðdT n
0Þ

2 þOððdT n
0Þ

3Þ; ð19Þ
where dT n
0 ¼ T nþ1

0 � T n
0. Eq. (17) may then be written as
Enþ1
0 ¼ Bnþ1

0 � o
2B0

oT 2
0

� �n

ðdT n
0Þ

2 þOððdT n
0Þ

3Þ: ð20Þ
But dT n
0 ¼ OðDtÞ and therefore,
Enþ1
0 ¼ Bnþ1

0 þOððDtÞ2Þ: ð21Þ

Consequently, the LI method satisfies Eq. (11a) to within the order-of-accuracy of the method. Note that this
is a weaker result than that for the IB method, in that the IB method satisfies Eq. (11a) exactly at each time
level. We stress that the O((Dt)2) error appearing in Eq. (21) is independent of �. If it were an increasing func-
tion of �, the LI method would not be asymptotic preserving.

Next we must check whether the LI method satisfies Eq. (11b) in the asymptotic limit. Using the relation
(20),
Enþ1
0 � En

0 ¼ Bnþ1
0 � Bn

0 þ
o

2B0

oT 2
0

� �n

ðdT n
0Þ

2 � o
2B0

oT 2
0

� �n�1

ðdT n�1
0 Þ

2 þOððdT 0Þ3Þ

¼ Bnþ1
0 � Bn

0 þOððDtÞ3Þ: ð22Þ
Insert this expression, along with (21), into Eq. (18) to obtain
ðT 0 þ B0Þnþ1 � ðT 0 þ B0Þn

Dt
� o

ox
dn

r0

oBnþ1
0

ox

� �
¼ OððDtÞ2Þ: ð23Þ
Note that unlike the implicitly balanced result (see Eq. (13a)), (23) treats the diffusion coefficient explicitly.
Nevertheless, this is a first-order accurate discretization of (11b) and therefore, the LI method is asymptotic
preserving through O(e0).

Next we must check the O(e1) terms. We obtain
Enþ1
1 ¼ Bn

1 þ
oB0

oT 0

� �n

ðT nþ1
1 � T n

1Þ þ
oB1

oT 1

� �n

ðT nþ1
0 � T n

0Þ ð24Þ
and
ðT 1 þ E1Þnþ1 � ðT 1 þ E1Þn

Dt
� o

ox
dn

r1

oEnþ1
0

ox

� �
� o

ox
dn

r0

oEnþ1
1

ox

� �
¼ 0; ð25Þ



1338 D.A. Knoll et al. / Journal of Computational Physics 226 (2007) 1332–1347
Using the same arguments that led to Eqs. (21) and (22), we obtain
Enþ1
1 ¼ Bnþ1

1 þOððDtÞ2Þ ð26Þ

and
Enþ1
1 � En

1 ¼ Bnþ1
1 � Bn

1 þOððDtÞ3Þ; ð27Þ

so that (25) becomes
ðT 1 þ B1Þnþ1 � ðT 1 þ B1Þn

Dt
� o

ox
dn

r1

oBnþ1
0

ox

� �
� o

ox
dn

r0

oBnþ1
1

ox

� �
¼ OððDtÞ2Þ: ð28Þ
This is a first-order accurate time discretization of the system (12a). Therefore, the LI method is asymptotic
preserving through O(e1).

2.2.3. Summary of the asymptotic analysis

From our asymptotic analysis, we can conclude the following:

� Both the IB and LI methods yield asymptotic discretizations that are asymptotic preserving through O(�).
� However, the IB method has the advantage that at each time level, it exactly satisfies the equilibrium con-

dition E = B. We refer to this property as equilibrium-exact. We anticipate that because of the equilibrium-
exact property, in cases where
– the time-level-n solution is far from equilibrium, or
– the temporal history of the relaxation process is unimportant(i.e. near equilibrium conditions),
the IB method will allow larger time steps than the LI method, while maintaining accuracy. Our numerical
results will demonstrate this advantage of the IB method, which we attribute to its equilibrium-exact prop-
erty. Note, however, that we have no formal proof that equilibrium-exact methods generally allow for lar-
ger time steps.
� In the asymptotic limit, the IB method treats its diffusion coefficient implicitly, whereas the LI method

treats it explicitly. Both are first-order accurate, but this is another reason that the IB method may be more
robust and allow larger time steps.

3. Modified equation analysis

In this section we will focus on semi-discrete in time modified equation analysis (MEA), as was done in [6].
It should be pointed out that MEA can be used for either accuracy or stability analysis [5,21]. For an excellent
discussion on the use of MEA, including the impacts of initial and boundary conditions one should consult [4].

3.1. Implicitly balanced methods

To apply MEA to Eqs. (7a) and (7b), we require Taylor series to eliminate Tn and En,
T n ¼ T nþ1 � DtT nþ1
t þ Dt2

2
T nþ1

tt �
Dt3

6
T nþ1

ttt þOðDt4Þ; ð29Þ

En ¼ Enþ1 � DtEnþ1
t þ Dt2

2
Enþ1

tt �
Dt3

6
Enþ1

ttt þOðDt4Þ: ð30Þ
After Eqs. (29) and (30) are substituted into Eqs. (7a) and (7b), the equations are manipulated resulting in the
original PDE/ODE system on the left hand side, and an additional right hand side which is the modification of
our original system.

The resulting modified equations for the first-order IB method are:
oE
ot
� o

ox
Dr

oE
ox

� �
� craðaRT 4 � EÞ

	 
nþ1

¼ Dt
2

Ett þ OðDt2Þ; ð31Þ
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and
oT
ot
þ craðaRT 4 � EÞ

	 
nþ1

¼ Dt
2

T tt þ OðDt2Þ: ð32Þ
This is the equation system the first-order IB numerical time integration is actually solving.

3.2. Linearized implicit method

When applying MEA to the LI method, in addition to Eqs. (29) and (30), we will need expansions for coef-
ficients which have been linearized (or fixed at time level n). This includes Dn

r ; r
n
a, and Bn,
Dn
r ¼ Dnþ1

r � Dt
oDr

oT
oT
ot
� Dt

oDr

oE
oE
ot
þ OðDt2Þ;

rn
a ¼ rnþ1

a � Dt
ora

oT
oT
ot
þ OðDt2Þ;

Bn ¼ Bnþ1 � Dt
oB
oT

oT
ot
þ OðDt2Þ:
Using these along with the Taylor series for Tn and En, substituting into Eq. (6) and rearranging, produces the
modified equations for the linearized implicit (LI) method,
oE
ot
� o

ox
Dr

oE
ox

� �
� craðB� EÞ

	 
nþ1

¼ Dt
2

Ett � Dt
o

ox
oDr

oT
oT
ot

	 

oE
ox

� �
� Dt

o

ox
oDr

oE
oE
ot

	 

oE
ox

� �

þ Dtc
ora

oT
oT
ot
½Bnþ1 � Enþ1	 þ OðDt2Þ; ð33Þ
and
oT
ot
þ craðB� EÞ

	 
nþ1

¼ Dt
2

T tt þ Dt
ocra

oT
oT
ot
½Bnþ1 � Enþ1	 þ OðDt2Þ: ð34Þ
This system has new terms as compared to that resulting from the first order IB system (Eqs. (31) and (32)). It
is interesting to note that the terms which come from the expansion of Bn+1 are collected in the OðDt2Þ expres-
sion. Again, when the LI method is used to time integrate Eq. (1), the resulting solution is the solution to Eqs.
(33) and (34).

4. Numerical experiments

4.1. Supporting asymptotic analysis

First we consider thermal equilibration in an ODE system, ignoring radiation diffusion in Eq. (1). Next we
consider the solution of the two component spatial solution (PDE/ODE system). Finally we consider the spa-
tial solution to the actual equilibrium problem. In all cases we have set aR = c = 1.

Consider the ODE problem with ra constant and equal to 1. This gives us the following for the LI method,
Enþ1 � En

Dt
¼ ð½ðT nÞ4 þ 4ðT nÞ3ðT nþ1 � T nÞ	 � Enþ1Þ; ð35Þ

T nþ1 � T n

Dt
¼ �ð½ðT nÞ4 þ 4ðT nÞ3ðT nþ1 � T nÞ	 � Enþ1Þ: ð36Þ
For the IB method we have
Enþ1 � En

Dt
¼ ððT nþ1Þ4 � Enþ1Þ; ð37Þ

T nþ1 � T n

Dt
¼ �ððT nþ1Þ4 � Enþ1Þ: ð38Þ
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Thus, for this simplified problem the only difference between the IB and LI methods is the linearization of T4.
For time steps larger than the equilibration time scale (r�1

a , or 1 in this case) we expect the solution E = T4.
We simulate this problem with initial conditions of E = 2 and T4 = 0.1, and with time steps of Dt = 1, 2.5, 5

for IB and Dt = 0.5, 1, 2.5, 5 for LI. For the ODE system, and these initial conditions, T4 > E is not a solution
of the continuum system at any time. Fig. 1 shows the solutions coming from the IB method. Recall that the
implicitly balanced method was shown to have the property of equilibrium-exact. Here we see correct physical
trends, even for large time steps. Near equilibrium is observed in one time step and clear equilibrium in two
time steps when Dt > r�1

a . Next we consider the LI method. Recall that it was shown that this approach was
asymptotic preserving, but not equilibrium-exact. Fig. 2 shows the solutions and a different behavior is
observed. There is erroneous temperature spiking, and clear equilibrium is obtained only after four time steps.
When the time step is less than the equilibrium time scale, (Dt = 0.5) physically correct trends are observed.
The fact that the asymptotic analysis produced different results for the IB and LI methods provides an expec-
tation of such behavior. This behavior results directly from the linearization of T4, and it has also been
analyzed by Larsen and Mercier [9].
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Fig. 1. Implicitly balanced solutions.
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Fig. 2. Linearized implicit solutions.
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Finally, the potential for erroneous results is directly related to the initial spread between E and T. This can
be seen in Fig. 3 where the initial conditions are E = 1 and T4 = 0.5 and the overall behavior of the solutions is
much better, although erroneous temperature spiking still occurs for Dt = 2.5 and Dt = 5.

With this information in hand let us consider a thermal wave with the full nonlinear model. We consider the
region 0 6 x 6 1 using 50 uniform finite volumes. The wave is driven by a fixed value of E on the left bound-
ary, E(x = 0, t) = 1. The initial conditions are E(x,t = 0) = (T(x, t = 0))4 = 1.0 · 10�4. We have chosen � = 0.1
(consistent with multiplying the equilibration terms by a factor of 100) with the goal of generating a near equi-
librium solution. The time step is ramped up over the first eight time steps to its stated asymptotic value,
Dt. The first eight time steps are: 0.1Dt, 0.1Dt, 0.2Dt, 0.2Dt, 0.3Dt, 0.3Dt, 0.4Dt, 0.4Dt. This was done to remove
the issue of the early fast transient on the left boundary resulting from the discontinuity between the initial
condition and the boundary condition (this is not a transport initial layer).
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Fig. 3. Linearized implicit solutions for E0 = 1 and T 4
o ¼ 0:5.
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Fig. 4. Implicitly balance solutions at t = 0.5 and 1.5, with Dt = 0.05.
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Fig. 4 shows results for the IB method with a time step of Dt = 0.05. This method should satisfy the asymp-
totic solution. Here Tr � T (or E � T4), but it is very important to note that T 6 Tr. For this set of initial con-
ditions and boundary conditions, in the continuum system, it is not possible for for T > Tr. Fig. 5 shows
results for the LI method. While we do see that Tr � T, we clearly have T > Tr which is not a possible solution
in the continuum. Fig. 6 show that the error in the LI method grows rapidly when we double the time step,
while the IB method maintains Tr > T. This deficiency of the LI method is indicated by the asymptotic analysis
and is also consistent with the findings of Larsen and Mercier [9]. This is not a transport initial layer issue, but
rather an issue of linearizing T4.

Fig. 7 shows that Tr > T for both methods with Dt = 0.005, and that the solutions of the IB and LI methods
become much closer. When comparing the LI and IB solutions in Figs. 6 and 7 we see that the wave from the
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Fig. 5. Linearized implicit solutions at t = 0.5 and 1.5, with Dt = 0.05.
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Fig. 6. LI and IB solutions at t = 1.5, with Dt = 0.1.
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Fig. 7. LI and IB solutions t = 1.5, with Dt = 0.005, along with comparison to their respective asymptotic equations.
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LI solution is slow compared to the wave from the IB solution. This has been observed previously in Ref. [7],
and we will return to this issue in the next section.

We also consider the numerical solution of the equation resulting from the asymptotic analysis in the IB
method Eq. (13) and LI method Eq. (18). The IB method is the circles and the LI method is the squares in
Fig. 7. We see that both methods are consistent with the solution of their respective asymptotic solution
for � = 0.1.

Finally, Figs. 8 and 9 show that both methods become independent of � as � is reduced (although different
from each other). Such independence of � is the essence of asymptotic preservation.

4.2. Supporting modified equation analysis

The results in this section are an extension of the study in Ref. [6]. First we will look at the coupled ODE
system, ignoring radiation diffusion, and use ra = T�3. Again, the IB method will be compared with the LI
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Fig. 8. IB solutions t = 1.5, with Dt = 0.005, for various �.
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method. To make isolating our point easier we will only linearize ra in the LI method here (T4 will be iterated).
To order Dt, the modified equations for this specific LI method, ignoring radiation diffusion are,
oE
ot
� raðT 4 � EÞ

	 

¼ Dt

2
Ett þ Dt

ora

oT
oT
ot
½T 4 � E	; ð39Þ
and
oT
ot
þ raðT 4 � EÞ

	 

¼ Dt

2
T tt þ Dt

ora

oT
oT
ot
½T 4 � E	: ð40Þ
The first-order implicitly balanced solution of
oE
ot
� raðT 4 � EÞ ¼ Dt

ora

oT
oT
ot
½T 4 � E	; ð41Þ
and
oT
ot
þ raðT 4 � EÞ ¼ Dt

ora

oT
oT
ot
½T 4 � E	; ð42Þ
which we will call LI-MEA, should give the same result as the LI method, assuming that the first-order
expansion,
rnþ1
a ¼ rn

a þ Dt
ora

oT
oT
ot
is accurate. If this is the case, the additional terms on the right hand side of Eqs. (41) and (42) define the dif-
ference between the LI and the IB solutions to this ODE system.

For initial conditions of E = 2.0, T4 = 0.1, the results are in Figs. 10 and 11 for Dt = 0.1 and Dt = 0.05,
respectively. It is clear the the terms in LI-MEA do define the difference between LI and IB. It is also clear
that the accuracy of the expansion is better at Dt = 0.05. Thus the MEA can help us to understand the impact
of linearizing ra in a problem like this. When using the LI method, the accuracy of the expansion of ra would
be a sensible time step control. Simply using an allowed change in T may be less defensible [8].

Finally, we revisit the speed of the thermal wave issue which was seen in comparing Fig. 4 through Fig. 7.
The LI method uses Dn

r while the IB method uses Dnþ1
r . Ignoring flux limiting for the moment we have, to first

order,
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Dn
r ¼ Dnþ1

r � Dt
oDr

oT
oT
ot
:

We know that
oDr

oT
/ T 2:
In the problem we are simulating oT
ot > 0. Thus Dnþ1

r > Dn
r , and this is why LI is slower than IB. Again, as Dnþ1

r

approaches Dn
r we would expect the two solution to come together. Fig. 12 shows the two solutions at t = 1.5

with Dt = 0.001 and the two solutions are quite close. As has been shown in Ref. [8], second order methods for
this problem are significantly more accurate. The specific second order method considered in [8] used D

nþ1
2

r to
advance the solution from tn to tn+1. The position of the front for this second order method was in between
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Fig. 11. Comparison of IB, LI, and LI-MEA for Dt = 0.05.
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that of the LI and IB methods when the same time step size was used. The MEA shows us that this results

from the fact that and Dnþ1
r > D

nþ1
2

r > Dn
r .

5. Conclusions

Numerical analysis of time integration errors for nonequilibrium radiation diffusion has been considered.
Two first-order implicit time integration methods have been studied. The implicitly balanced method (IB) iter-
ates the nonlinearities within a time step, while the linearized implicit (LI) method does not. Asymptotic anal-
ysis and modified equation analysis have been applied to both time integration methods, and numerical
experiments have been used to highlight the results of the analysis.

Using asymptotic analysis, it has been shown that the IB method preserves the asymptotic equilibrium solu-
tion exactly (E = T4). The LI method has been shown to preserve the asymptotic equilibrium solution, while
not exactly preserving E = T4. Numerical experiments have demonstrated that with large enough time steps
the LI method can produce erroneous answers when the equilibrium answer is expected. This is related to
the violation of a so-called maximum principle as discussed by Larsen and Mercier [9], and it is not related
to a transport layer being modeled by diffusion. The analysis of Larsen and Mercier applies to linearization
of the Planck function with a full multifrequency transport treatment rather than a grey nonequilibrium dif-
fusion approximation, but their results must nonetheless be expected to be qualitatively if not quantitatively
relevant to our calculations.

Using modified equation analysis we have been able to extract the terms which represent the first-order dif-
ference between the IB and LI solutions. We have used this analysis to demonstrate why the LI method will
equilibrate a cold material field and a warm radiation field at a different rate than will be done with the IB
method. We have also used this analysis to explain why the progress of a one-dimensional thermal wave using
the LI method will always be slower than the progress simulated with the IB method.

The computational cost of the LI versus IB methods has not been addressed in this study. A brief compar-
ison for nonequilibrium radiation diffusion was given in Ref. [14]. There, it was demonstrated that although IB
can take a larger time step than LI-type methods and maintain design accuracy, these larger time steps come at
the cost of increased Newton iterations per time step and thus increased computational cost per time step. In
this study, at time steps where the LI method shows significant nonphysical behavior (see Fig. 6), the IB
method results, although well-behaved, do have significant error. For example, the front position predicted
by the IB method in Fig. 6 is approximately 20% ahead of the time-step converged position (compare with
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Fig. 12). Nevertheless, in terms of robustness, the ability of the IB method to maintain a physical solution at
large time steps is a definite advantage. In the end, a reliable time step control is needed for either method to
ensure the methods operate with desired accuracy. Time step control and a detailed computational cost com-
parison should be a focus of future work.
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